
Energy Efficient Matrix
A Proposal for RISC-V Matrix Extension(s)



Claim

• AI may fuel significant increases in energy use
• AI currently depends on matrix multiplication

• (Unless matmul-free preprints pan out)

• Without energy efficiency, solutions will be discarded and 
replaced with efficient ones
• RISC-V should bake in energy efficiency from the start



Preliminaries
• Problem Size N, Tile size T

• Matrixes and Tiles can be rectangular, but complicates presentation
• Data is 𝑁!, number of mul/adds is 𝑁", Tile is 𝑇! computed with 𝑇" mul/adds
• Parallelism 𝑁!, full parallelism latency 𝑁Δ, tile parallelism 𝑇! latency 𝑇Δ
• Data usage: each element of A used 𝑁 times, same for B, 𝑇 for tiles

• Matrix Multiply
for i ← 0 to m-1
  for j ← 0 to p-1
    for k ← 0 to n-1
      c[i,j] ← c[i,j] + a[i,k] * b[k,j] 

• Matrix Multiply with accumulator
for i ← 0 to m-1
 for j ← 0 to p-1
   acc ← c[i,j]
   for k ← 0 to n-1
     acc ← acc + a[i,k] * b[k,j]
   c[i,j] ← acc

• Tiled Matrix Multiply
for ti ← 0 to m-1 step TR.  // tile i
  for tj ← 0 to p-1 step TC // tile j
    for i ← 0 to TR-1
      for j ← 0 to TC-1
        for k ← 0 to n-1
          c[ti+i,tj+j] ← c[ti+i,tj+j] + a[ti+i,k] * b[k,tj+j] 

×=



Goals
• Energy efficiency

• Use load data as many times as reasonable per load
• Use register file reads as many times as reasonable per access
• Make storage local and small

• Balancing load bandwidth and computation
• Make them equally limiting when reasonable

• Scalability
• Expose parallelism so that implementations may exploit as much as they are willing 

to pay for
• Cost

• Exploit pipelining to save area
• Keep storage proportional to benefit

• Complexity
• Prefer simple instructions to complex ones when other things equal

• Avoid iteration in hardware when iteration in software works just as well
• Provide flexibility



Balance Load and Compute
• If load bandwidth is 𝑉elements/cycle 𝑇 = 𝑉 and computing 𝑉! 

mul/adds in two cycles balances load and compute time
• 𝑉×($

%
) array of mul/add units accomplishes this if Δ ≤ 2

• Compute Δ/2 tiles of C in parallel if Δ > 2
• Outer product method:

• 1 cycle load 𝑉 element vector from A to VRF
• 1 cycle load 𝑉 element vector from B to VRF
• 2 cycle outer product accumulating to C tile in ???
• iterate 𝑉 times in software

• Matrix method
• 𝑉cycle load 𝑉×𝑉	tile from A to MRF
• 𝑉cycle load 𝑉×𝑉	tile from B to MRF
• 2𝑉 cycle tile matmul accumulating to C tile in MRF, iterating in hardware



Outer Product (OP) vs Matrix Multiply (MM)
• Both have computational intensity !

"
 when load balanced (𝑇 = 𝑉)

• Both have 𝑉 element reuse when load balanced
• OP has 2𝑉 VRF storage, and 𝑉" for C tile in ???
• MM has 3𝑉" MRF storage, much more than OP
• MM has greater complexity, OP is simpler
• Question is where to store C tile for accumulation for OP

• Storing C file in VRF is far from compute, high-power, high-area
• VRF bits have minimum 4 read ports, 2 write ports
• VRF size increases often required to store 𝑉! C tile—not a good trade-off

• Distributed accumulators in the mul/add array are local, low-power, low-
area
• Local accumulator bits have 1 read, 1 write port



Using Memory Data Multiple Times
• An accumulation tile of T×T use each source element T times
• Energy efficiency therefore wants to maximize T (fewer reloads)
• Maximizing T with matrixes means 3𝑇"register file storage (C, A, B)
• Maximizing T with outer product means 𝑇" for C only

A and B are only T element vectors
• For the same number of register file bits, outer product supports 

larger T
• Examples for 512 b/cycle load bandwidth:

64×64 int8 with int32 accumulation = 128 Kib (16 KiB)
64×64 fp8 with TF32 accumulation = 78 Kib (9.7 KiB)



Less Compute Than Load Bandwith

Load bits 8b 16b 32b 64b

256 32×16 16×8 8×4 4×2

512 64×32 32×16 16×8 8×4

Δ ≤ 2 mul/add array sizes
Load bits 8b 16b 32b 64b

256 64×16 32×8 16×4 8×2

512 128×32 64×16 32×8 16×4

Δ = 4 mul/add array sizes

If these mul/add arrays are too large, compute will be slower than loads.
Example: load 512b/cycle, TF32 + BF16×BF16, Δ = 2
• Balanced needs 512 mul/adds to compute one 32×32 tile every 2 cycles
• If only 128 mul/add possible? Clearly 4× slower, but the method matters:

• OP: load 32-element vectors, use 16×8 mul/add array 8 times into 32×32 accumulators
each element used 32 times ⇒ high energy efficiency

• MM: load 16×16 tiles (16 cycles), use 16×8 mul/add array 32 times into 16×16 MRF 
accumulation tile, each element used 16 times times ⇒ lower energy efficiency

• Comparison: OP is simpler, better energy efficiency
• OP wins in balanced, wins more when sub-bandwidth compute



Proposed Instructions
• msetcli rd, rs1, vtypei sets VL based on the number of columns specified in rs1 that can be processed by 

the v*outer.vv instructions and returns this value to rd.
• msetrli rd, rs1, vtypei sets VL2 based on the number of rows specified in rs1 that can be processed by 

the v*outer.vv instructions and returns this value to rd.
• vwouter.vv vs1, vs2 performs an integer widening outer product (acc ← acc + outerproduct(vs1, vs2)) for 

the current settings of SEW, VL, and VL2. Only VL columns and VL2 rows of the accumulators are modified.

• vfouter.vv vs1, vs2 performs a floating-pointer outer product (acc ← acc + outerproduct(vs1, vs2)) for the 
current settings of SEW, VL, and VL2. Only VL columns and VL2 rows of the accumulators are modified.

• vracc vd, rs1 reads the row of acc selected by rs1 and writes this to vd in the integer format selected by SEW using the 
length specified by VL. This transfer may involve some format conversion from the internal accumulator format to the specified 
integer format.

• vfracc vd, rs1 reads the row of acc selected by rs1 and writes this to vd in the floating-point format selected 
by SEW using the length specified by VL. This transfer may involve some format conversion from the internal accumulator format 
to the specified integer format.

• vrracc vd, rs1 reads the raw format row of acc selected by rs1 and writes this to vd as bytes as determined 
by acccolb.

• vwacc rs1, vs2 writes the row of acc selected by by rs1 from vs2 in the integer format selected by SEW using the length 
specified by VL. This transfer may involve some format conversion to the internal accumulator format from the specified integer 
format.

• vfwacc rs1, vs2 writes the row of acc selected by rs1 from vd in the floating-point format selected by SEW using the 
length specified by VL. This transfer may involve some format conversion to the internal accumulator format from the specified 
integer format.

• vrwacc rs1, vs2 writes the raw format row of acc selected by rs1 from vs2 as bytes as determined by acccolb.



Conclusions

• This analysis suggests
• Don’t store matrixes in VRF or MRF
• Accumulate into local mul/add array registers, not a distant register file
• Matrix extensions should optimize for

• Loading vectors
• Computing the outer product of these vectors
• Accumulate into local storage for energy savings

• Target a balance between load bandwidth and compute when possible
• Maintain element reuse when compute < load bandwidth for energy efficiency

• Other additions possible but this should be the core functionality


